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* Importance of ABL processes for COPS.
 Note on my background/biases/expertise.

* (My) view of ABL processes, potential
relevance to QPF, past research.

e (My) IHOP hypotheses and results.
 Hypotheses for COPS?



ABL’s significance

» Reservoir for most of the H,O In the
atmosphere.

* Point of origin for a great deal of deep
convection.

* Locus of interaction between the earth’s
surface and the atmosphere — primary
iIntegrator of the complexity of the earth’s
surface.



Overarching questions for ABL
studies in COPS

e \What are current limits in our ability to
observe and simulate the ABL?

e Are these limits related to our lack of
progress in improving QPF skill?

— particularly in heterogeneous terrain and
during summer convective conditions?

 If so, what targeted ABL studies might
contribute to improving QPF skill?



Statement of personal bias

Flux measurement methodology origins,
including lidar

Many biogeochemical applications
Airborne lidar studies in BOREAS (1994) —

apparent contradiction of Avissar/Pielke
results.

Involvement in SGP97, IHOP 2002.
Focus on role of heterogeneous land
surface in daytime ABL structure.

— An observational skeptic in flat terrain




Factors that influence ABL
structure and turbulence

surface fluxes (lower boundary),
surface orography (lower boundary),
ABL fluid dynamics and thermodynamics,

entrainment zone/free tropospheric
structure (upper boundary),

ABL-top clouds (upper boundary),

synoptic-scale advection (horizontal and
vertical).



Three regimes of coupled surface-
ABL heterogenelity

______________________________

deep, dry shallow, moist L >>27
m&eoscdeurculanon L ~few*z
L <<z

See, for example, Patton et al, (2004); Mahrt (2000).



ABL research/current limits

 Homogeneous regimes. (L >> z, L << z))

— ABL parameterizations are imperfect.
Particularly difficult problems include:

e entrainment,
e surface fluxes.

— Direct observations of surface fluxes are not
avallable iIn most locations.

— Surface fluxes not mapped (L << z; case).
— ABL depth is often not observed.



ABL research/current limits

 Heterogeneous surface regime
— Middle scale (what is L?) Is uncertain

— Ability to observe mesoscale structure in ABL (moisture, z,,
temperature, wind) is limited

— Ability to explicitly simulate (e.g. Large Eddy Simulation)
mesoscale flow is limited
« Large domain, high-resolution needed in both cases

— Mesoscale models predict that surface heterogeneity has a
strong influence on convective initiation (Cl),

 but this finding is difficult to evaluate with detailed field data.

* Does surface heterogeneity lead to favored spots for
convective initiation/precipitation?

e Analogous discussion exists for low mountains?



Analogous limits for terrain?

e H/L << 0.1 or H/z; << 0.1 — “flat”

« H/L >=0.1, H/z, >= 0.1 — terrain-induced ABL
flow, “low mountains”

« H/L>>0.1, H/z; >> 0.1 — “alpine” (or night)

- - - .-
- -
-
-
-
-
-

-
_____

"
-
‘—
-
St ="




(My) IHOP hypotheses

focus on daytime, summer, convective conditions
At some L (fairly large), surface heterogeneity creates
mesoscale flow.
This flow will often create favored locations for CI.
At very large L, separate 1-D ABLSs develop.

Mesoscale NWP models can reproduce these surface-
ABL interactions given accurate boundary conditions.

Simulating these 1-D ABLs well is necessary for
accurate CI/QPF.

The scale of ABL heterogeneity is smaller than the scale
of the operational observing network.

More dense observations/better modeling of ABL
heterogeneity (especially ABL H,O vapor) will improve
prediction of CI/QPF.



(My) IHOP approach

1. Find a way to map surface sensible and latent
heat fluxes over a mesoscale domain.

2. Observe ABL depth and moisture content over
the same domain. ABL turbulence and flow
also, If possible.

3. Repeat step 2 until the pilots are sick of you,
and/or flight time runs out.

— go beyond case studies. E.g., L =f(U).
4. Hope that Cl happens some time.
5. When this doesn’t work, write another proposal.
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LEANDRE LIDAR IMAGERY (5/19)
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Frontal Passage
leaves IHOP region
under a cool, dry, and
well-capped airmass

DLR Falcon
morning
Dropsonde

On LEANDRE
track north of
Homestead
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ALEXI Sensible Heat flux
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UYKA Latent Heat Flux
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South

DLR lidar observations along this N-S gradient.

IHOP 29. May 2002 8. Flight Leg 8 (S—>N
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N-S variability in ABL depth

DLR lidar

 On 19, 20, and
29 May, the ABL
depth increases
with latitude.

* On 25 May, and

/7 June, ABL
depth is more
homogeneous.

e ABL depth
patterns match
the surface H
patterns
surprisingly well.
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Soil Moisture(%
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Surface conditions
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affected by
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Blending heights for western track UWKA
flight days

Date M C) U. WO, Ly L -Z/L

wm

(mst)  (K) (ms?) (Kmsy) (M) (m)

May 19 13.2 299.7 0.76 031 12/69 2869 12.8
May 20 13.2 300.4 0.76 029 12449 2958 12.2
May 25A 1.1 296.5 0.26 0.19 704 366 117.8
May 25B 34 300.3 0.29 0.21 5677 1070 1134
May 29 4.9 308.3 0.39 0.14 7030 2879 37.4

June 7 10.2 310.3 0.54 0.17 13434 4135 20.5




(My) IHOP conclusions

At some L (fairly large), surface heterogeneity creates
mesoscale flow. Yes, at 60 km scale, L = f(U).

This mesoscale flow will often create favored locations
for Cl. Never (obvious) during IHOP?

At very large L, separate 1-D ABLs develop. Yes, across
entire 300 km domain.

Mesoscale NWP models can reproduce these surface-
ABL interactions given accurate boundary conditions.
Still a hypothesis.

Simulating these 1-D ABLs well is necessary for
accurate CI/QPF. Still a hypothesis.

The scale of ABL heterogeneity is smaller than the scale
of the operational observing network. Yes, see lidar z,,
moisture data.

More dense observations/better modeling of ABL
heterogeneity (especially ABL H,O vapor) will improve
prediction of CI/QPF. Still a hypothesis.



Other IHOP conclusions

* Do not neglect the importance of thin
elevated layers

— entrainment zone structure varies across
space.
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Potential hypotheses for COPS

 Improved ability to predict ABL depth/T/Q will
lead to systematic improvement in CIl timing.
— Homogeneous ABL. Improve modeled surface
fluxes, entrainment?
* Improved simulation of spatial heterogeneity in
surface fluxes will have only slightly improve CI.
Will primarily influence location.

* Improved simulation of mesoscale flow induced
by low mountains will improve CI significantly.
Will influence location, timing and intensity.



More potential hypotheses for
COPS

Terrain and surface heterogeneity will alter the
ABL and thus significantly modulate the
development of existing precipitation systems.
(?)

Incorporating the statistical properties of ABL
turbulence into forecast models will more
accurately simulate the stochastic nature of CI.
(?)

Increased observation/assimilation of large-

scale ABL heterogeneity will improve CI/QPF
prediction.

Entrainment zone structure will prove to be an
Important factor in predicting CI/QPF.



Suggestions for greatest progress
INn QPF

(from a skeptical, flatland, observational ABL biogeochemist)
e Target observations and modeling of
regions where complex mesoscale flow Is

iImportant

— High resolution observations and modeling
required cannot be maintained operationally?

* Improve link between convective
parameterization and surface latent heat

flux(?)

 Expand data assimilation — rainfall, water
vapor.

 Treat Cl as a stochastic problem.



